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Abstract

An important issue in designing manipulators for dynamic performance is the determination of the acceleration
properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical equations of the
planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on the rates-of-
changes of the joint variables, we systematically develop (a) the properties of the linear mapping between the
actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the properties of the
(non-linear) quadratic mapping between the rates-of-changes of the joint variables and the acceleration of the
end-effector. We then show how these mappings can be combined to obtain useful acceleration sets - for example
the acceleration set corresponding to any point in the workspace of the manipulator - as well as the properties of
these sets.




1 Introduction

An important issue in designing manipulators for dynamic performance is the determination of the
acceleration properties of (some reference-point on) the end-effector of the manipulator. Given the dynamical
equations of the planar two degree-of-freedom manipulator and a set of constraints on the actuator torques and on
the rates-of-changes of the joint variables, we systematically develop (a) the properties of the linear mapping
between the actuator torques and the acceleration of (some reference-point on) the end-effector and (b) the
properties of the (non-linear) quadratic mapping between the rates-of-changes of the joint variables and the
acceleration of the end-effector. We then show how these mappings can be combined to obtain useful acceleration
sets - for example the acceleration set corresponding to any point in the workspace of the manipulator - as well as
the properties of these sets.

It is useful to briefly mention the work done by others on related problems. Khatib (I, 2] sets up an
optimization problem to improve the acceleration of the end-effector; however the non-linear terms in the dynamical
equations are accounted for in somewhat ad-hoc fashion (by taking certain "high” and “low" values of these terms).
Graettinger and Krogh [3] use semi-infinite programming to obtain the "acceleration-radius” (or "isotropic
acceleration”) of a manipulator. In contrast to our approach, both the above-mentioned approaches do not yield the
acceleration sets of the manipulators (defined in section 2) or the properties of these sets or show how the properties
of the sets are related to the geometric and dynamical parameters of the manipulator.

The report is organized as follows: The problem and the variables of interest (in the problem) are defined in
section 2. In the next section, we describe certain decompositions of the manipulator Jacobians which are useful in
deriving certain properties of the linear and (non-linear) quadratic mappings. The properties of the linear mapping
and the quadratic mapping, respectively, are derived in section 4 and 5. In section 6, we show how these maps can
be combined to obtained the acceleration set corresponding to any point in the state space; we then determine the
properties of this set. Similarly, section 7 is devoted to determining the acceleration set (and its properties)
corresponding to any configuration (or "position”) in the workspace of the manipulator. In the final section, using
the example of the planar manipulator in our laboratory, we address the computation of the acceleration sets and
their properties.




2 Déefinition of the Problem
In this section, using a simple two degree-of-freedom manipulator, we define the problem to understand the
dynamic performance of manipulators.

First, we define manipulator variables in subsection 2.1. In the following subsection, we express the
manipulator acceleration in terms of the variables. In subsection 2.3, we define the problem to characterize the
manipulator performance with end-effector acceleration.

2.1 Definition of the manipulator variables
Consider the serial two degree-of-freedom manipulator with two revolute joints shown in Figure 1. The
manipulator is assumed to be rigid with negligible joint friction.

Figure 1: A two degree-of-freedom manipulator

Let I, denote the length of link 1, a, the distance from joint axis 1 to the center of mass of link 1, m, the mass
of link 1 and I, the principal moment of inertia of link 1 with respect to its center of mass about an axis
perpendicular to the plane of the motion. Similarly, let /,, a,, m, and I, denote the corresponding properties of link
2 (See Figure 1). We call these quantities design variables.

T, and 7, denote the joint torques, respectively, at joints 1 and 2 and

T = [y o 0))
denotes the vector of joint torque vectors. Let

It s 1, =12 @
denote the constraints on the actuator torques at joints 1 and 2. We define

T = (v 1% S 1, =12) 3)

to be the set of allowable torques.

Let (x,.x,) denote the coordinates, in a reference frame fixed to the base, of a reference point P on link 2 (Sec
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Figure 1) and define

X = [xl 12]7 @)
to be the vector of task coordinates in task space. Let q; and q, denote the generalized coordinates of the
manipulator (See Figure 1), q, being the joint variable at joint 1 and g, the joint variable at joint 2. Define

q = (g ¢ ®)
to be the vector of joint variables in joint space. If

qq S q; < qup =12 (6)
denotes the constraint on joint variable i, then we can define the workspace W of a manipulator as

W=(q!lq s q S qp i=12) Q)

Let q; and g, denote the joint velocities (the rates of change of the joint variabies) q, and q,, respectively.
Define

q=1[2 &f ®)
to be the vector of joint velocities. If

llqll < bio’ i=192 (9)
denotes the constraints on the rates of changes of the joint variables, then we can define

F = {q I |2],'| s EI,'O- i=1,2} (10)
1o be the set of all possible joint velocity vectors.

Define the state vector

ue=(q @ =1[q ¢ @ )7 , (11)
to represent the dynamic state of a manipulator in the state-space.

The acceleration space or acceleration plane, A, of the manipulator is the set of all possible accelerations,
X = [X, X,]T, where X and X, are real numbers.
More formally we can define

A = {X | XeR?) (12)
where R is the real Euclidean plane.

2.2 Manipulator acceleration
In this subsection, we derive an expression for the acceleration [4],

X = [ 5, (13)
of the reference-point P on the end-effector, since this quantity plays an important role in our analysis.

The relationship between the velocity, X, of point P, and the "joint velocity” vector q is well known:

x = Jq (14)
where J is a (2x2) matrix called the manipulator Jacobian. The detailed expression of Jacobian matrix is shown in
Appendix.




" The dynamic behavior of the two degree-of-freedom manipulator is described by the following equations:
dn(‘h)('il + 412(42).42 = v(qz)(b‘2+22112]2) + p(@ =1 (15)

@4 + dpdy -~ W@@D) + 1@ = 1, (16)
where the coefficients dg(qz). (ij=1.2), v(q,), p{q), (i = 1,2 ) are given in Appendix; note that coefficients d; (iJ
=1,2), v(q,) are functions of only joint variable q,.

Defining
[ dy(e) dy)(gp) 1 _
D(q,) := | | amn
L dz;(‘]z) dyy J.
[0 -v(gy) 1
Vig) = | | (18)
L vy 0 1,
P@ = (@ @I 19)
q = [q ¢l (20)
and
@ = (2 @+ 4T Q1)

the dynamic equations (15) and (16) become,

Dg)d + Vigplal® + p@ =t (22)
The matrix D(q,) is the mass matrix of the manipulator and the vector p(q) denotes the gravitational terms
influencing the dynamic behavior.

A crucial step in the acceleration analysis is the definition of the skew-symmetric matrix V(q,) and the vector

(q)2, which allows all the non-linear terms (often called Coriolis and centrifugal) to be written as the product of
V(q,) and {g)2. The notation { )2 is used to draw attention to the fact that the elements of the vector (q)? are

quadratic in the rates-of- changes q, and q,, respectively, of the joint variables q, and q,. Note that (q)? is not
equal to i17'='éhz"‘elzz-
To obtain the expression for the acceleration x of the point P, we differentiate (14) to obtain
X=J4+ Jg 23)
In Appendix, we show that the second term in (23), J §, can be written in the form
Ja = -E@fa)? @4)
Combining (23) and (24) we obtain

X = J§ - E@(@)? @25)
Defining the quantities,

A@@ = J(@Dl(g,). (26)




B(q) = -A(@QV@ - E(@. @n

@ = -AlQpr@. (28

it is easy to verify that the expression for the acceleration X of the point P, obtained by combining equation (22) with
equations (25) through (28), is given by

X =A@t + B{q)? + (. 29

Note that A(q), B(q) and c(q) are position dependent, the expressions for the coefficients of which are given
in Appendix.

{f the manipulator operates in a (horizontal) plane perpendicular to gravity, then ¢(q) = 0 and (29) becomes
X = A(Qr + B(q)% (30)

In this paper, we will study manipulators, moving in horizontal planes, whose acceleration properties are
described by equation (30).
Defining

o = (o, ol = A@Qr @n

0

Aand

o, = [, o7 = B@(a)? 32)
equation (30) can be written as

i('=o.,+a-q (33)

It is convenient to think of a., as the contribution of the torques to the acceleration of the reference point P and
a; as the contribution of the joint-rates to the acceleration of P, the sum of these two quantities giving us the
acceleration of P as expressed by equation (33).

Equation (31) can be viewed as a linear, position-dependent, mapping between the torque vector T and its
contribution @, to the acceleration of P. Similarly equation (32) can be viewed as a quadratic, position-dependent,

mapping between the joint rate vector q and its contribution a to the acceleration of P.

2.3 Definition of the problem

The acceleration X of the reference point P of a manipulator, specified by its design variables, constraints on
the torques as given by (2) or (3), constraints on the joint variables as given by (6) or (7) and constraints on the joint
velocities as given by (9) or (10), will be a subset of the acceleration plane A of equation (12). In other words, the
acceleration set for a combination of the above constraints can represent the dynamic performance of manipulators.
To characterize the manipulator dynamic performance, we generate four acceleration sets as follows:

First, we consider the manipulator acceleration set when the joint velocity is zero. Physically, the set
represents the manipulator dynamics when a manipulator starts to move. For the given set T of allowable actuator
torques described by (3), we define the set of all allowabie o as

S, = (ay | Gre T™Na, = A7)} (34)




* Next, when the actuator torque vanishes during the operation of a manipuiator, the subsequent motion of a
manipulator is also critical in manipulator dynamics. For the given (constraint) set F of allowable rates-of-change,
described by (10), we define the set EH of all allowable @ as

s; = (o, | Gae FXe; = B@?) (35)

Finally, when a manipulator is in motion, we consider two acceleration sets in the following. The acceleration

of the reference point P corresponding to a specified state-vector u = [ q;, q,, 4;. G5 17 in the state-space will be
denoted by a,. From equation (30), we write

o, = AlQr + B(@)(q)? 36)
If we define a constant vector k,

k) = k@) = Uy, &l = ;@9 = B@{q)? 37
then (36) can be written as

o, = A(Qr + k(u) (38)

We now define the acceleration set, S, at a specified point u in the state space as follows: For a given set T of

allowable actuator torques described by (3), the acceleration set S, at a point u = [ q, q 17 in the state - space is
given by

$.qQ) = (o | (u=(q.q)), (Fre T)(t,=A(q)r+k(u))) 39
Thus s, is the image of the set T under the mapping (38).

Finally, at a given positionq = [ q;, q, 17 in the workspace of the manipulator, we can define two sets

(Sph

Vae £S(Q.@ (40)

(sl)z = hl.le E'Su(Q1.q.) (41)
The supremum of (S;), will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( q,, q, ) of the manipulator.

The infimum of (S;), will give us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infimum of (S;), is called the isotropic
acceleration in Khatib {1] and the local acceleration radius in Kim [5].

Based on the above definitions, the manipulator problem can be written as follows;
1. To characterize four acceleration sets, S,, S o SwSp with their shape and supremum and infimum.
2. To examine the behavior of four acceleration sets S, S;, Sy, Sy

In Section 4 and 5, respectively, we study the properties of the linear mapping described by equation (31) and
the properties of the non-linear mapping described by equation (32). The acceleration properties of P, obtained by
combining these two maps, is discussed in Section 6. In the next section we present a decomposition of the Jacobian
which is helpful in the study of the aforementioned linear and non-linear maps.




3 Decompesition of the manipulator jacobian

In this section, we derive some little known decompositions of the manipulator Jacobians. These
decompositions facilitate the derivation of the properties of the acceleration properties in Sections 4 and 5. Let v
denote the velocity of point P in a reference frame fixed to the base N, (n; n,) be a set of dextral orthogonal unit
vectors fixed in N, (a; a,) a set of dextral orthogonal unit vectors fixed in A, and (b, b,) a set of dextral
orthogonal vectors fixed in B (see Figure 2).

Figure 2: Description of the velocity vector.

We pick n, so that it points in the direction of the positive x; axis and pick n, so that it points in the direction of the
positive x, axis (Figure 2).

Defining,
. [ cosg; -sing; |
R(q) == ! Lo (i=12) @42)
sing; cosq;
and referring to Figure 2, we obtain,
(3, 8,]7 = Rg,) [ b,I” @3)
(n, ny)7 = Rig,) [a, a,". (44)

The velocity of the reference point,v, in the reference frame N is given by

v haay + L@ a)b, “3)
From equation (45), we obtain




veb, = [,g,a,%b, (46)

veb, = [jq1,00; + 1;(41+4)- @én
Note that v e b, and v ¢ b, are simply the b, and b, measure numbers of the velocity of P in N. Using equations
(42), equations (46) and (47) can be rewritten in the matrix form,

[veb,1  [ising, 0 1Mg] 48)
Lveb,]  Licosqur, 4 1 lg,)
Defining,
r llsiriqz 0 ]
M) = | | 49)
L fcosgtly, L ]
and using (5), equation (48) becomes
[veb, veb,]T = M(g) q (50)
Referring again to the geometry of Figure 2, we can write,
[vea, vea,]” = R(g,) [veb, veb,]” (51)
(ven; ven)T = R(g,) [vea, vea,l’ (52)

Equation (51) simply relates the b, and b, measure numbers of v to the a, and a, measure numbers of v;
similarly (52) relates the a, and a, measure numbers of v to the n, and n, measure numbers of v.

Combining equations (50) through (52) we obtain
[ven; ven)] = R(q;) R(g,) M(g,) q (33)

If x is the position vector of P with respect to the fixed point pivot O, then from equation (4) and the choice of
the directions of n; and n, (see Figure 2), we can write
X = yn + uh, (54)
and,

vV=X=5Xxn +xn, (55)
From (55), the »; and n, measure numbers of v are given by

(vem, ven,)7 = [k, x,]7 (56)
Combining (53) and (56) we obtain,

X = [ I’ = Rig) Rg) Mg q 7

Comparing equations (57) and (14), we obtain
J@) = R(q) Ri(gy) M(q,) (58
Note that we have decomposed the Jacobian matrix, J(q), into the product of three matrices which depend either on
q, or g, but not both q, and q,. R(q,) and R(q,) are simple orthogonal matrices and N(q,) represents the kinematic




coupling between the two links. In a similar fashion, we can show that the matrix E(q) in equation (24) can be
written as

E(q) = R(q)) R(gy) N(qp) (59)
where
[ licosqytly, iy 1
N@y) = | f (60)
—llsin Q2 0 J.

Equations (58) and (59) are very useful in deriving the properties of the acceleration maps in section 4 and 5.
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4 Linear mapping
o2 .
T2 A

D 20 A

\B '
: T4 4 al .
20 20 D\
c - B
T20
_ c'’

(@ (b)

Figure 3: Linear Mapping
For the given set T of allowable actuator torques described by (3) and represented by ( the interior and the
boundary of ) the rectangie ABCD shown in Figure 3-a, we defined the set of all allowable o, in section 2 as

Se = {a; | Gre TXa, = AT)}.

In this section, we simply state that S. is the parallelogram AB'C'D’ shown in Figure 3-b and we will derive
three properties of the set S,. The first property determines the "size” of S, as characterized by its infimum,
supremum, and its area. The second property expresses the q, invariance of S,. The third property expresses the q,
dependency of S..

The decomposition, expressed by equation (58), of the manipulator Jacobian is extremely useful in the
derivation of the properties of the set S.. Combining equation (58) and (26) we obtain

A@ = R(g;) R(g) M(g) D7(gp). (61)
Defining a matrix P(q,) as

P(g)) = Rigy) M(q) D“(qz). (62)
we can rewrite (61) as

A(q) = R(q,) P(qy). (63)

Note that we have decomposed A(q) into an orthogonal matrix R(q,) depending only on q, and a matrix P(q,)
depending only on q,. This decomposition facilitates the derivation of the properties below. The (i,j) element of A
and P will be denoted, respectively, by a;;, andp,..

Le. A, B', C, D’ denote, respectively, the points in the o, - plane into which the points A(1y,, T,,). B(Ty,,.-
Ty C(-T1 o ~%y,) and D(-1y,, T,,) map. Then it is easy to verify that the coordinates of A, B, C, D in the o -




e

11
plane are given by
A (@ T¥8yTy, 3T1t0nT,) (64)
B (ay71,7015%, 21T107%2%0) (65)
€' (T80T, ~9yT1,-02%2) (66)
D' (-8),7),+8)5T, 3Ty, +apTs,). )

Since (31) is a linear mapping, AB'CD ' is a parallelogram; the equations of the sides AB’, BC,CD and D'A" are
readily obtained as

| 1 a4y 99
AB - +  (———— = 0, T < < 6
a—l;‘n a2t ( z, azz)"lo (311T107812T20 S 31 S Gy 1Ty, +d13To,) (68)
o1 1 92 “n
BC —ay; ~ —ay, + ()T, = 0, (-a17T),40137),81: 58T, +35Ty,) (69)
| a4 ay1 a9
cp 1 1 a1 91
D —a ~ —ay; ~ (=7, = 0, (-a),7y,78)37,,20;;S -0 T ,;+315Ty) (70
312 an a2 a3,
A | 1 a2
DA  —ay ~ =Gy = )Ty, = 0, (=ay171,-013T5,S a1 281T1,013Ty,)- (M)
a1 4 a1 9

eProperty 1: The set S is a parallelogram whose supremum, infimum and area are given by

sup(Sy) = max[ V(p; 24Py AT 2401, 4P0s 20 1 £ 2001 10124 P 0y P20 T, |- (72)
p— t —
inf(s,) = min |®11P22P12P21) N0l 1(P11P22P1P2) Too! ] o3
‘/P122+P222 VP 24p2y?
n
area(s,)= | 15542 [ 41,1, (74)

Uy +mya 2Ny +maay )+ (I +mya, Bsin g myl 2
oProof:

If 5(0'A)), 6(O'B"), 6(0'C), 5(O'D) denote, respectively, the distances of the vertices A', B', C, and D’ from
the origin O', then the supremum of S, is given by
sup(Sy) = max[o(0'A), 6(0B), o(0C), a(0D)) (15)
Since A" and C are equidistant from the origin O and since B" and D’ are also equidistant from the origin, (
observation (1) above ),
sup(s,) = max[o(0'A), o(0B))= %max [0(AC), o(BD)] (76)

where o(A'C) and o(B'D) denote the lengths of the diagonals A'C and B'D". Combining equations (64) - (67), (63)
and (42), 6(A'C") and o(B'D)) are given by

O(AC) = V(o1 24py 20, 1+ 4020 200, 242001 1P 24P 21 P22 1T an
OBD) = V(o 24P 0 24122402 Y0, - 2(11P 12+ P21P22) T 020 78)

Therefore,
Sup(S) = max[ V(o 24y m1, 01 P2 Y, £ 201 P12 PP M, - (9)

If p(O'A’), p(O'B), p(O'C), p(O'D’) denote, respectively, the distances from O to AB’, B'C', C'D’, D'A’, then

——— |
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the infimum of S, is given by

inf(s;) = min[p(O'A), P(OB), p(OC), p(OD)) (80)
Since AB” and C'D’ are equidistant from O’ and since B'C’ and D'A” are also equidistant from O', (observation (2)
above)

inf(s;) = min(p(48), pB'C)] @1)
The distance p from the origin to a general linea x+fy+ ¢ =0inthe: y - pi.e is given by
p = —.__l__—-L—l__. (82)
Yot + P

Substituting appropriate values of ¢, B, and ¢ from equations (68) and (69) into equation (82) and using equations
(63) and (42), we obtain

[P11Pua=P12P2) Trol  1detP(g)ly,

p(AB) = = ‘ (83)
’/szz*‘l’zzz "!’122*'1”222
. 1P11P22— ) 5,1 1detP(g,)
pBC) = | P1P2 P12P2) T2l _ 2120 @)
‘/Puz“'l’zlz "Puz"’szz

Substituting (83) and (84) into (81), we obtain
[detP(g)) fty, [detP(g,)its, y

inf(S,) = min( (85)
Vpro*+p? Vo1 24py?
The det P(q,) vanishes at q,= 0, x. Therefore inf (S,) = 0 at g,=0, =.
Since the area transformed by the linear mapping A is
T,
[ dercaranym, 36)
—110 -‘20
the area of the parallelogram is obtained as
det(A) [T),~(-Ty )] [T—(-T2)] @7
= det(R(gp) det(R(g) det(M(gp) det(D'(g) 41,1, @8)
= det(M(gy)) det®7'(qy) 41,,Ty, (89)
I Lsi
= 1hsind, | 41,7, (90)

| .
Uy +mya, Uy +maa, 1+ +maay sin2g,)myl 2
eProperty 2: q, - dependence of S,

The supremum, infimum, and area of the set S, is independent of the joint variable q,. For two manipulator
S(q1+042p) = R(9)S(9,.42) ©n

<«Proof:

S, is a linear mapped set between actuator torques and the end-effector accelerations. So, property 2 is proved
if the vertices of S(q,+9, q,) are the simple rotation of $.(q, ;). Components of vertex A are
11T, +813%, = (COSqyPy;—Sing Py )Ty, +(COS 41 2-SIN 1P )Ty,
= €08¢;(P11%1,*P12%20)8in G () Ty P2 20) ©2)
A T1ot8nTy, = (SiNG Py #C08 Q1P )T +(SiN g P12 +C0Sq1P20)T),




13
= SR (Py1T1,+P12%20)+C0S 1(P21T1,%P2220) 93)
Rewriting equations (92) and (93),
(8)1T1,%815Ty, 21715023020l =RO®) [P1171,#P13%0 P2T1o%P2aT20) (94)

Similarly, other vertices of S(q,+¢, g;) can be shown as a product of R(¢) and S,(q,, g,). Therefore,
S{q1+0.q;) = R(9)S.(q,45)

sProperty 3:q, - dependence of S,
The supremum, infimum, and area of the set S, depends only on the joint variable g,.

We merely state this property to emphasize that the size of S, depends only on q,, a property which is to be
expected since, everything else being the same, two positions for which g, is identical {i.e. (q,. q,) and (ql', q,)] are
equivalent from a kinematic and dynamic standpoint. The property follows obviously from the equations (72)-(74)
which depend only on g,.
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5 Quadratic mapping

For the given (constraint) set F of allowable rates-of-change, described by (10)and represented by (the interior
and the boundary of) the rectangle E,F,E,F, shown in Figure 6-a, we defined the set Sq of all allowable a, in
section 2 as

Sy = (o, | GqeF)a; = B(q)?))
As in the previous section, the following questions are important
1. How is S described ?
2. What is the size of Sa ? Specifically, what is its infimum and supremum ?
3. How does CH depend on the joint-variables q, and q,.

5.1 Description of S

If we define a vector
y = by yll = g @raP-a47 95)
then equation (32) can be expressed as
= B(Q y - (96)

Therefore the mapping (32) can be viewed as the product of the quadratic mapping (95) from the q - plane to y -
plane followed by the linear mapping (96) from the y - plane to the o plane.

The quadratic mapping (95) maps the constraint set F in the q - plane into a set in the y - plane which we denote by
. Then the linear mapping (96) maps this set Sy into a set in the oy plane which is simply the set Sq defined in
(35)

We will therefore first obtain the set Sy from the constraint set F under the quadratic mapping (95). 3 is then
determined from S, under the linear mapping (96).

5.1.1 The quadratic map and the description of S
Formally, we define Sy as follows:

S, = (y | Gaemg = (@2 ) On
Using equation (21) we can write (95) explicitly as

n= '412 (8

Y = (211"’212)2'5112 99)

We now have to determine the mapping of (the interior and the boundary of) the q - plane rectangle E, ¥, E,F, into
the y - plane as determined by (98) and (99).

The notation
X » X (100)

will be used to denote the fact that the point X, in the q - plane maps into the point X in the y - plane, i.e. X is the
image of X,.
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q'2
; ], e,
Hy H, d
U1 1
E2 Gz F2

Figure 4: an available joint velocity set

From equations (98) and (99) we use that the pair of points X,(q,, 4,) and X,(-q;, -d,) in the q - plane both have the
same image X( 4,2, (q,+d,)*-,?) in the y - plane, i.e.
X1@ @), X0 ~1) ~ X@h @+)*-0) (101)

Consider the rectangle E,F,E,F, in Figure 4. A consequence of (101) is that the quadrants O,H,E,G, and
O,H,E,G, of E FE,F, both map into the same region of the y - plane; Similarly the quadrants O,G,F H, and
0,G,F,;H, ( of EF,E,F, ) both map into the same region of the y - plane. Therefore we only need to determine the
region of the y - plane into which the "upper-half” H,E,F,H, (of the rectangle EF,E,F,) maps. Formally

H,E,F H, is described:

F = (q! GgeF) @ 2 0)] (102)
The required set S,y is therefore the image of F_ under the quadratic mapping (98) and (99). To determine Sy we first
need to establish the following:

1. the image of the points O,, H;, E,, G, F,, and H, under the mapping (98) and (99).
2. the image of a line
@ = mq ' (103)
of slope m passing through the origin O,.
If O, H, E, G, F denote the image of points O;, H;, E,, G,, and F,, then from (98) and (99) we can write
0, (0, 0) - 0(0,0) (104)

H (§10 0 Hy ( =100 0) > HV( Py 0) (105)

_———-—
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E, ( Q1o 320 ) = EC 017 @1,+820%3,,2) (106)
Fi ( ~@qyp @y ) = F ( 21,2 @15-92.2-01) (107
G, (0 7,) = G (0, &,) (108)

Note that the points H, and H, have the same image as is to be expected from (101). Also, the origin O, of the q-
plane maps into the origin O of the y - plane. Using (98) and (99), the line (103) in the y - plane maps into the set of
points

n = 4 (109)

Y2 = @+mg)-g2 = F(m* + 2m) (110)
Equations (109) and (110) are the parametric equations of the straight line

Y = (m? + 2m) y,. (111)

Therefore a line passing through the origin and of slope m in the q - plane maps into a line passing through the
origin and of slope (m? + 2 m ) in the y - plane.

To obuain the image in the y - plane of the rectangle H,E,F H,, it is convenient to divide H,E,F,H, into four
triangular sections O,H,E,, O,E,G,, O,G,F,, and O,F,H, and separately determine the image set for each of these
sections. The required image set is simply the union of the four image sets.

In order to determine its image set, it is convenient to think of each triangular section as composed of line
segments passing through the origin. This will enable us to readily determine the interior of the image set.

Image set of O,HE,:
E
y2
q2
&,
=]
P1
m
q _ y
1 1 1 (o) H 1
(a) (b)

Figure 5: Image set of OH,E,
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" Let (s,), denote the image set of the triangle O, H,E, (see Figure 5-a ). Since a line passing through the

origin O, in the q plane maps into a line passing through the origin of the y - plane described by equation (103), the
image of the generic line segment O, P, of slope m passing through O,, shown in Figure 5-a, will be a line segment
of slope (m2 + 2 m) passing through the origin O in the y - plane. We now only need to determine the images of the
end points O, (0,0) and P; (q;,, g, ) of the O,P, . The image of O,, is of course, (see equation (104). ), the origin
O of the y - plane. Let P denote the image of P,. Then the line segment O,P; maps into the line segment OP with
one end-point at the origin O of the y - plane. All we need to do now is to determine the locus of P as P, moves
along the line segment H,E,. Using equations (98) and (99), the image of the line segment H,E, described by the
quations

q = Ehov (0 < '42 < .420 ) (112)
is the line segment HE, described by the equation

Furthermore the images H and E, respectively, of points H, and E, are given by equations (105) and (106).

Therefore
1. the locus of P in the y - plane is the line segment HE,

2. the several line O, P, of slope m maps into the line OP passing through the origin O whose equation is
given by (111) and whose end-point P lies on the line segment and

3. any point on O, P, maps into a point on OP.
Therefore the image (sy), of the (interior and boundary of the) O,H,E, is the (interior and boundary of the)

triangle OHE, shown in Figure 5-b whose vertices O, H, E are given, respectively, by equations (104), (105), and
(106). (O is of course the origin of the y - plane!).

Image-Set of O,E, G,
y2
' E
q 2
P
G £ E
1
m G
q y
O, 1 o) 1

(a) (b)

Figure 6: Image setof O,E,G,
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" Let (Sy), denote the image-set of the triangle O,EG,, shown in Figure 6-a. Using similar arguments as
above, the generic line segment O, P, of slope m, shown in Figure 6-a map into a line segment of slope ( m?+2m).
If P denotes the image of P, then the image (S’)z now reduces to obtaining the locus of P as P, moves along G,E,
in Figure 6-a.

From equations (98) and (99) the image of the line segment G,E, described by the equation

‘-72 = 2120. ( 0< ‘.11 < qlo) (114)
is the parabolic segment GE in the y - plane described by the equation,

02 = 2P = 432,91 ( Pip S 12 S Gt 0107 ) (115)
and shown in Figure 6-b.

Therefore the locus of P in the y - plane is the parabolic segment GE, the coordinates of whose end points G
and E are given by equations (108) and (106).

The image (s,)z of the (interior and boundary of the) triangle O,E,G, is the region OEG shown in Figure 6-b,
whose vertices O, E and G are given, respectively, by equations (104), (106), and (108); EG is a parabolic segment
described by equation (115).

The Image-Set of O,G F,

(a) (b)

Figure 7: Image set of O\E,G,
Let (S,) denote the image-set of O,G,F,.

As before the generic-line O, P, incise O,G,F, ( see Figure 7-a. ) maps into the line segment OP, where P is
the image of P,.
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* In this case, we have 1o find the locus of P as P; moves along G,F,.

Using equations (98) and (99), the image of the line segment G, F,, described by the equation.

212 = 2120- ( “.11, < q s 0 (116)
is the parabolic segment GF in the y - plane described by the equations,
02 = 3, = 40,91 ( @002 <€ ¥ S @2 ) (17

Therefore the locus of P in the y - plane is the parabolic segment GF, the coordinates of whose end-points G and F
are given by equations (108) and (107).

The image (sy)3 of the (interior and boundary of the) triangular segment O,G,F, is the region OGF shown in
Figure 7-b, whose vertices O, G, and F are given, respectively, by equations (104), (108) and (107). Note that (sy)3
is not convex.

Image-Set of O,F H,
g
F1 2 Y2
H
P1 0 y1
P
g

1 F

H 1 1

(a) (b)

Figure 8: Image set of O,F,H,
Let (s,),, denote the image-set of the triangle O,F H, in Figure 10-a.

Then the procedure for finding (s’)‘ of the (interior and boundary of the ) triangle O,F,H, (shown in Figure
8-a) is the triangle OFH, shown in Figure 8-b, whose vertices O, F, and H are given by equations (104), (107) and

(105).
Image-Set of H,E,F H,

The image-set S, of the rectangle H,E F, H, is given by

S, is shown in Figure 9.

The image-set Sy of F is the (interior and boundary of the) region OGEF, shown in Figure 11, whose vertices
0, G, E and F are given, respectively, by equations (104), (108), (106) and (107). The boundaries of OGEF are the
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d 2
E
G
H q
O 1
F

Figure9: Imagesets,

line segments OG, OF, and FE and the parabolic segment GE whose equations are as follows:

0G y; =0, (0 sy S &)

(Eh "2120)2‘2721 .
OF y, = —2 %, (0SS y s g2)
bloz

FE y]=21102. ( (2110“2720)2"@102 Sy < (2110""420)2"4102 )

GE (v - @3,0% = 43,5, (0 S y; S g,,2).

(119)

(120)

(121)

(122)

Thus OGEF is completely determined. The region OGEF is convex, even though (S,) 5 is non-convex. This is a

consequence of the fact that the non-convex boundary of (s’)3 lies in the interior of Sy.

It will be useful in section 7 to approximate the parabolic segment EG by a straight line; consequently the
region OGEF (.., S, is approximated by a quadrilateral ). Two approximations, shown in Figure 12, which are of

interest in the sequel are the following:

1. the parabolic segment EG is approximated by the straight line segment EG joining E and G; the
quadrilateral OGEF which is the carresponding approximation to the region OGEF, (sy), will be called

the inner approximation to S,.

2. the parabolic segment EG is approximated by the line segment EI which is tangent to the parabolic
segment at E and which intersects the y, - axis at I. The quadrilateral OIEF which is the corresponding
approximation to the region OGEF, (s’). will be called the outer approximation to S,.

The coordinate of I are given by
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Figure 10: Approximation of Image set

I 0, 2g,,% ). (123)

5.1.2 The linear mapping (96) and the determination of S;‘

From equation (35), the desired image set Sa is the image of Sy under the linear mapping (96). The matrix
B(q) which characterize the linear mapping (96) is given by equation (27). Combining equations (26) and (27) and
using the decompositions of the J(q) and E(q) matrices given, respectively, in equations (58) and (59), we can write
B(q) as

B(@) = R(g) R(gy ( -M(gp) D7l(gp) V(g;) - N(gp ). (124)
Defining the matrix S(q,),

S(@p = Rigy) [ -M(gy D7 g, V(g - N(gp ), (125)
we can write B(q) as

B(q) = R(qy) S(gp)- (126)

Therefore B(q) can be written as the product of a matrix § which is a function of q, only and a simple orthogonal
matrix which depends on q, only.

The (i, j) element of the matrices S(q,) and B(q) will be denoted, respectively, by s;and b,

IfO, G, E,F,and I denote, respectively, the images in the A; - plane of O, G, E, F, and I, then using (96)
we can write the following:
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E@1,2 @15492%01,0) = E ((11=b15)01,24015(@1,+ 820 (B1529)81,24+b55(@1,+ 320D (127)
F@1,% @15-020% 01,2 = F((01151081,7+01301 2% (02103002, +b2(@1,32)) (128)
o (0 0) - 0 (0, 0) (129)
G (0, 32) = G (bya bugyt) (130)

The images EF, OE, OF, and O'G’ of the linesegments EF, OE, OF, and OG are line segments described by the
following equations:

EF - btz _a.z;, + o Zzz)q =0 (131)

0E - a“’ = %2 (132)
G150, 01010020 G5 @1+ 2.

oF - acl = | (133)
G150, 4013017020 OO 4008102,

e R | (134)

b b '
The parabolic segméﬁt EG ngps into a parabolic segment GE.

We can therefore write: The i unage set Sg of the set F is the ( interior and boundary ) of the region E FOG,
shown in Figure 11, whose vertices E.F,O0, and G are given, respectively, by equations (127), (128), (130), and
(129). The segments EF,OE,OF,and OG are given, respectively, by equations (131), (132), (133), and (134),
Thus s a is completely determined.

g2

1

Figure 11: Image set S,
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5.2 Properties of Sa
In this section, we derive expressions for the supremum and infimum of S ¥

5.2.1 Furthest vertex of S,-l

" We first show that the furthest vertex of Sa is E. Inspection of equations (119) through (122) shows that the
furthest vertex of the set Sy is E. Since the set Sa is the image of Sy under a linear mapping, the furthest vertex of 53
is the image of the furthest vertex, E, of Sy- Therefore E is the furthest vertex of S P

5.2.2 Supremum of Sﬁ
The supremum of S a is the distance of the furthest vertex E from the origin. Using equation (127), we obtain

sup(sy) =
(51,5122 H(591~522)°121 4+ (5124525 21@ 1, +2,) *+20512(511=51)+22(521=52)101 " @122 (135)

5.2.3 Infimum of S;l
Since the origin O’ (0, 0) is one of the vertices of Sg» the infimum of Sa is zero: _

inf(sgy) =0 (136)
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6 The state acceleration set, S,
We defined the acceleration set, S, at a specified point u in the state space as follows:

Definition of S (q.q): For a given set T of allowable actuator torques described by

the acceleration set S, at a point u = [ q, |7 in the state - space is given by

S, @@ = {a, | (u=(q.q). Fre T)(1,=A(q)r+k(u)))
Thus s, is the image of the set T under the mapping (38).

6.1 Determination of S,
Inspection of equation (31) and (38) reveals that

,(q.q.7) = 0, (q.7) + k(q.q) (137)
where 0,(q , T) € S,(q, 7) and &,(q, q, 7) € S,(q. q, 7).

From (137), we see that

Q. =0, 1) = a/q, 7). (138)
Defining,
1 0 1
I := (139)
L c
and
@, = aq, g=0, 1) (140)
then
o, = I ofq 7) (141)
and
o, = & + kQ.Q). (142)
If wcdeﬁneasetéu,
S, = (@ | Gaes)@, = 1 o), (143)

then é, is the image in the A, - plane of the set 's, in the A, - plane under the identity mapping (139). From (142)
the desired acceleration set S, at a specified pointu=(q, q 17 in the state space is the set obtained by translating 'sn
by the (constant) displacement vector k ( q, ¢ ). This process of generating S, is shown in Figure 12-a, b, and c.
We can write S in the following equivalent form:
Se = {0y | Goyesy) (@ = o, + k) (144)

Since s, is a parallelogram AB'C'D’, 5, and S, are also paralielograms congruent to S, but lying in the A, - plane.
The centroid of the set S, has coordinates ( &y, &, ) as shown in Figure 12c. Loosely speaking, we can say that
S is obtained by transiating S, by ( o, @, ) from the origin.
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(b)

Figure 12: A state acceleration set

d2u

(c)

dqy

If A", B’,C’, and D" denote, respectively, the images in the A, - plane of points A', B', C’, and D’ in the A, -

plane (Figure 3-a), then from equations (137) and (64) through (67), we obtain

A8y 71,401 00y T 4T, = AllkHay T 40T, Kty T +anT,,)
B(8y1T1,-013 00 1500 T) > B (ky+ay Ty ,~015%0, kytay T 0y,
Cloay Ty a1ty T 0Ty, = Clky=ayT,-813T, Kty Ty —anty,)
o T T A A N e LTV L )
S, is the ( interior and boundary ) of the parallelogram A'B'C'D". The sides A'B", B'C", C'D’, and D'A” of the
parallelogram are obtained by (137) and equations (68) through (71),

- a1 91 )
AB- —ay, + (—+—), + (~—r—)
* a3 a3 o 812 9y
B C. - —ay, + (—?l_zfq.aizyt + (—M}
a5 4y a1y a9
_ 11 9 1 &
CD: ~—ay ~ —ay, ~ ( a—;*;;)‘lo + (m)
- 1 ay; 4 ky K
DA. -~ —dy — (—.—-+-—2-)t +  (——t—)
e ay < a1 a4 % a, a4y

6.2 Supremumof S,

(145)
(146)
(147)
(148)

(149)

(150)

(1sn

(152)

The supremum of S, is a measure of the largest acceleration available ( in some direction ) at a specified point
in the state-space. In a similar manner to that of S, the supremum of S, is obtained as the distance of the furthest

vertex of the parallelogram A'B'C'D’ from the origin O™ of the A, plane.

IfI(O'A™),I(O'B"),I(O°C"),and I{ O'D") denote, respectively, the distances of the vertices A", B", C", and
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D’ from the origin O, then from (145) through (148) we obtain

(O'A) = V(kj+a) Ty ,+a15T2) 4 (kytay Ty +ap T, )
KO'B) = Vlky+ayy11,7017%,) Hipray 71,058,
HO'CT) = Vlky=ay)T1,-013%2) + (by=51 Ty~ 05 )
(O'DY) = Vlky=ay) Ty 40,30y Y+ (kg Ty 55T )

The supremum of S, is given by
sup(s,) = max{ (O'A), (O'B"), (O'C"), O'D) ]

6.3 Infimumof S,
The infimum is the maximum isotropic acceleration for a certain manipulator position in the workspace.

To obtain the infimum we must consider three cases

xa
Xa
X2
" /43 i, 4 w
/o — ol / ~
(a) (b) and (c) (d)

Figure 13: the relative location of a parallelogram to the origin

1. The origin O lies outside the parallelogram A'B'C'D" and O does not lie between either pair of
parallel lines (Figure 13-a) comprising the sides of the parallelogram.

2. The origin O lies outside the parallelogram A'B'C'D" and O’ lies between A'B” and C'D" (Figure
13-b).

3. The origin O’ lies outside the parallelogram A'B'C'D" and O’ lies between B'C" and D'A” (Figure
13-c).

4. The origin O’ lies inside the parallelogram A'B'C'D" (Figure 13-d).

(153)
(154)
(155)
(156)

(157

Using well-known results from analytic geometry, the condition for O to lie between the parallel lines A'B” and

C'D’ is obtained from (149) and (151) as

condition 1:
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k
! "2)2 < fu “21)21102; (158)
812 9 812 9n

the condition for O to lie between the parallel lines B'C" and D"A” is obtained from (150) and (152) as

condition 2:

k
(_lﬂ‘l’l)2 < (i‘i-aﬁ)?—:z} (159)
a1 9 a1 9y

Using the above two conditions, the three cases can easily be identified from the following rules:
o case 1: both conditions 1 and 2 are faise.

e case 2: condidon 1 is false and condition 2 is true.
e case 3: condition 1 is true and condition 2 is false.

¢ case 4: both conditions 1 and 2 are true.
The infimum for the three cases is obtained as follows:

case 1:(Figure 13-a)

In this case, the infimum is the distance of the closest vertex of A'B'C'D" from the origin O". Therefore
inf(s,) = min[ X0'4"), XO'B), KO'C), HO'D") ) (160)

case 2:(Figure 13-b)

In this case the infimum is the distance from the origin to the nearest side, which is either A'B" orC' D'

letd(A'B") and d( C'D" ) be, respectively, the distances from O to sides A'B" and C'D'".

w1811 89=81901)T , E(a90ky 05k |
dAB)ACD) = 1192278129210, £ (apk —ay 0k, (161)
Va2 +a,,?
In a manner similar to obtaining the infimum of S, the infimum of S, is obtained from equations (161) as
inf(S,) = min{ d(A'B"), d(C'D) } (162)

case 3:(Figure 13-c)

The nearest side is either B'C or D'A”. let d( B'C" ) and d( D'A” ) be, respectively, the distances from O to sides
BC and D'A".
(@152, -4 ¢ +(aq,ky—-ay k)|

129217011802)%, £ (@9, k1~ k) (163)

dB"CHAD'A) =
Va 1 12*"1212

The infimum of S, is obtained from equations (163) as
inf(s,) = min[ d(8°C’), d(D'A") ] (164)

case 4: (Figure 13-d) The infimum is the distance from the origin to the nearest side which could be either
A'B",B'C",C'D",or D'A". These distances were computed for cases 2 and 3 above. Therefore,

inf(s,) = min[ d(A'B"), dBC), dC'D", dD'A’) ] (165)
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To summarize the results of this section we can state the following lemma.

Lemma: The acceleration set S, at a point u in the state-space of the manipulator is a parallelogram with
centroid located at the point ( k;, k, ) defined by equations (37); the supremum of S, is given by (157) and the
infimum of S, is given by one of equations (160), (162), (164), and (165). The supremum and infimum of S, is
independent of the joint angie q,.

7 Local acceleration sets
At a given positionq=1{q,. q; 17 in the workspace of the manipulator, we could define two sets in section 2

(Sh

Yae E‘su(q’q)

(Spy = Mae E‘Su(q’el)
The supremum of (S;); will be give us the magnitude of the maximum acceleration (in some direction ) of the
reference point P at a given position ( q;, q, ) of the manipulator.

The infimum of (S;), will give us the magnitude of the maximum acceleration of the reference point P
available in all direction at a given position of the manipulator. The infimum of (S;), is called the isotropic
acceleration in Khatib [1] and the local acceleration radius Kim [5].

7.1 Determination of (S ),
The generic member S, of the set (S,), was described in section 6 and is shown in Figure 9. As q is varied,

S3 is a parallelogram which moves parallel to itseif. The locus of the centroid, ( k;, k, ), of the parallelogram as q is
varied is simply the boundary OGEF of the set S; shown in Figure 11. Therefore we can describe (S,); as
follows: The local acceleration set (S;), is the region swept out by the parallelogram S ; as its vertex moves along
the boundary OGEF. This is shown in Figure 14.

7.2 Supremum of (S, ),
The supremum of (S, ), is simply the distance of the origin from the furthest point of (S,),.

To determine the furthest point of (S, ),, all we need to do is to determine

1. the furthest vertex of OGEF,

2. the parallelogram at the furthest vertex, and

3. the furthest vertex of this parallelogram
In section S, we showed that E' is the furthest veriex of OG'EF. The distances d(O'A’y'), d(O'B'z), d(O'C'z ), d(
O'D'E' ) of the vertices of the parailelogram with centroid E are given by (153) through (156). The supremum of
(Sp), is now readily obtained as

sup(S;), = max( d(O'Ap), d(OBg), dOCy), dODY) 1. (166)
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Figure 14: Determination of (S;),

Figure 15: A local supremum

7.3 Determination of (S ),

Using reasoning similar to that in the above section we can describe (S, ), as follows: The local acceleration
set (S;), is the largest region common to all the parallelograms generated by moving the generic parallelogram S
along the the boundary OGEF.




N ,

Figure 16: (S;), and a local infimum

7.4 Infimum of (S; ),
The infimum of (S ), is the maximum distance to the origin from the boundary of (S, ),.

To determine the infimum of (S;),, the inner and outer approximation of the set Sq in section 5 (and
consequently the boundary OGETF ) are useful.

The problem of detenniniﬁg the infimum corresponding to an approximating quadrilateral reduces to
examining the parallelograms with centroids at the vertices of the approximating quadrilateral since these represent
the extreme parallelograms.

The procedure for finding the infimum, r, corresponding to an approximate quadrilateral (inner or outer) is as
follows:

1. Construct the parallelogram at each of the four vertices O, G ,E,F or O, I, E, F of the quadrilateral.
LetP, (i= 1,2, 3, 4) denote these four parallelograms.

2. Check if each parallelogram P, satisfies the two conditions (158) and (159). If all the parallelograms
satisfy these conditions, then an infimum exists.

3. For each parallelogram, P,, determine the minimum distance, d;, from the origin to the four sides of P,.

4. Then the infimum, r, of (S ), for the approximation is given by
r = inf(S), = min(d;i=12,3,4) (167)
Let r, and r, denote, respectively, the infimum corresponding to the inner approximation OGEF and OIEF.

We now need to distinguish 3 cases.
ecase 1: ry = min (d;,i = 1,2, 3, 4) was obtained from the parallelogram with vertex I. In this case r; and
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" r, are different and
ry < inf(S); < ry (168)
. e case 2: r, = min (d;, i = 1, 2, 3, 4) was obtained from the parallelogram with vertex G. In this case r,
and r, are different and
rp < inf(sy))y, < np (169)

e case 3: r; is not obtained from the parallelogram with vertex G and r, is not obtained from the
parallelogram with vertex L. In this case r; and r, are both obtained from one of the other three vertices
and therefore r, =r, and
inf(S)), = ry =1y (170)
Therefore we either obtain the inf (S;), exactly as in equation (170) or with tight bounds as in equations (168) or
(169).
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8 Example

In this section, we will illustrate the manipulator dynamic properties obtained in section 4 through 7 using a
two degree-of-freedom manipulator. First, we show the state accelerations at the vertices of joint velocity
contribution quadrilateral in section 6. The contribution, o, of actuator torques in section 4 is the local acceleration
set with the zero joint velocity vector. Then, using the state supremum and infimum in section 6, we illustrate the
manipuiator state performance. Finally, the local supremum and infimum in section 7 is calculated.

To provide an experimental test-bed, we have built a two degree-of-freedom planar revolute-jointed
manipulator, shown schematically in Figure 1. The design variables of the manipulator consist of

[,=0.303m [,=0.254 m

2,=0.196 m 2,=0.0941 m

m;= 2.26 kg my=0.177 kg

I,=0.129 kg m? 1= 2.77x1073 kg m?
The actuator torque set is

T={tl|ltl < 30. Nm, i=12},
the joint-velocity set is

v =1(q!lgl £ 10 radlsec, i=12},
and the workspace is
Ww=1{qll < ¢, S ® rad).

We choose the manipulator position as q = [ 0, /2 JT. Our first step is to calculate the elements of matrices
A, B for the manipulator position as follows;

a“= 0.0(X) alz-—- ’58-6“ a21=l.308 =-1.308
by = -0.007 b= -0.000 byy= -0.247 byy=-0.247

Using equation (157), the state supremum at point O of section 6 are calculated as 1761.73 m/sec2. ‘Since the
parallelogram of section 4 is the state acceleration at point O, the supremum of the contribution, oy, of actuator
torques in section 4 is also 1761.73 m/sec?.

To obtain the state infimum, two conditions (158) and (159) are tested. Two conditions for our manipulator
are both positive, and equation (165) for case 4 is used to calculate the state infimum for [0, 1.57, 0, 0 |7. The
infimum for ( 0, 1.57, 0, 0 JT is 39.22 m/sec2.

The local supremum is the supremum of the state acceleration located at point O’ in Figure 17. From equation
(166), the supremum of position [ 0, 1.57 )7 is obtained as 1761.78 m/sec®. To caiculate the local infimum, two sets
of state accelerations should be considered as in section 7. The infimums for the state acceleration sets at point O,
F.E, G T, of section 6 are as follows:

point O point F point E point G point I

1761.73 m/sec2  1761.73 m/sec2  1761.78 m/secz  1761.74 m/sec?  1761.74 m/sec?

Among these infimums, the minimum is the infimam as in equation (170). So, the local infimum for { 0, 1.57 Vis
38.23 m/sec?.
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Figure 17: The acceleration set for a dynamic state O
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Figure 18: The local acceleration set
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I. Equations of motion for a two-degree-of-freedom planar manipulator
1. Jacobian matrix

The Jacobian matrix J has the following components:
Jy=—lisingy=hsin(q;+qz)
J1z7~hsin(q, +4;)
jar=licos q,+1,c08 (q,+qy)
jaz=heos (a,+q;)

When this relationship is differentiated with respect to the time, we obtain the following equation.
X=Jq+Jq=J§-E{q)?
where E is a (2x2) matrix which has the following elements:
=4 c0s q,+1,c08 (q;+q,)
€19=4,c08 (¢, +qy)
eq;=/sinq,+l,sin(q,+q,)
e5y=lysin(q+q,)
2. Dynamic equation
The dynamics of a two-degree-of-freedom planar manipulator is described by the following equation:
D3+ V{ql+p=<
D is a (2x2) matrix and the components are as follows:
dy =1, +m, a,2+],+m,(a,2+23,l,cos g, +1,%)
dy =L +m,(ay2+ayl,cos ,)
dip=dy

dyp=Iy+m,a,%.
V is also a (2x2) matrix and has a following components:
vi1=0
V= v
v=0.
where
Vv = myayl;sing,.
p=(p; pzlris a vector with the rank 2.
p;=m, ga,sinq,+m4g(!,sin q,+a,sin (4, +q,)]
py=m,gaysin (q,+qy)
where g is a gravitational constant.

3. Acceleration equation
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The expression of the acceleration of the end-effector consists of three components as follows:
x=At+B(q}>+c
where
A=JD1!
B=-AV-E
c=-Ap
A is a (2x2) matrix and has the following components:

a11=4(1dn-j12d12)
a17=4(=j; 1y 41241 1)
271=4(2,d2-jd;2)

ay7=A(=Jp d12+ix2d11)
where

A=(d;dyy~d; 21!
B is also a (2x2) matrix and the elements are as follows:
by =-vaj;—ey,

byp=va;;—¢;
by1=~vay €y

byy=vay =€y,
¢ = [¢, ¢,]7 is a vector with the rank 2.

C1=a11P1+a 0P,

€=y P1+anp,
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